Journal of Organometallic Chemistry 139 (1977) 49-59 © Elsevier Sequoia S A, Lausanne - Printed in The Netherlands

SYNTHESE ET ETUDE PAR RESONANCE MAGNETIQUE NUCLEAIRE DU CARBONE 13 ET DE L'ETAIN 119 D'UNE SERIE DE TRIORGANOSTANNYL-2 BUTANES

ALAIN RAHM, MICHEL PEREYRE

Laboratoire de Chimie Organique et Laboratoire de Chimie des Composés Organiques du Silicium et de l Etain, associe au C N R S, Université de Bordeaux I, 351, cours de la libera tion 33405 - Talence (France)

MICHEL PETRAUD et BERNARD BARBE

Centre d'Etude Structurale et d'Analyse des Molécules Organiques (C E S A M O) Université de Bordeaux I, 351, cours de la Libération, 33405 - Talence (France) (Reçu le 26 avril 1977)

Summary

Optically active triorgano-2-stannylbutanes have been synthetized by different methods, one being the direct substitution of optically active s-butyl halides with triorganostannyl alkali metals. This route involves a complete or partial inversion of configuration at the chiral carbon atom Carbon-13 and tin-119 NMR data are reported as support for the identification of eight triorgano-2stannylbutanes. The special case of tetra(2-butyl)tin, with four identical chiral centres has been examined.

Résumé

Une série de triorganostannyl-2 butanes optiquement actifs a été synthétisée par différentes méthodes, dont la substitution directe d'halogénures de s-butyle optiquement actifs par des triorganostannylalcalins. Cette voie s'avère accorapagnée très généralement d'inversion complète ou prédominante de la configuration du carbone chiral. Les spectres de RMN du carbone 13 et de l'étain 119 sont rapportés pour huit composés de la série et permettent leur identification Le cas particulier du tétra(butyl-2)étain, qui possède quatre centres chiraux identiques, a été examiné.

La stéréochimie de l'établissement et de la rupture de la haison étain-carbone est un domaine abordé dans de nombreux travaux [1]. Malheureusement, la plupart des modèles envisagés jusqu'à présent ont été particuliers. petits cycles ou systèmes polycycliques [2-7]. Le cas des modèles aliphatiques plus simples n'a été que très rarement abordé [8-12] Afin d'apporter notre contribution à ce problème, nous nous sommes intéressés à une série de composés aussi simples que possible: les triorganostannyl-2 butanes optiquement actifs.

Dans ce mémoire, nous complèterons l'étude des différentes voies de synthèse que nous avons été amenés à envisager afin d'obtenir les carbures organostanniques. Nous décrirons aussi les spectres de résonance magnétique nucléaire du carbone 13 et de l'étain 119 qui nous ont permis de déterminer leurs structures sans ambiguité.

I. Synthèse d'une série de triorganostannyl-2 butanes optiquement actifs

La première voie suivie, décrite par ailleurs, a été celle de l'hydrostannation asymétrique [13].

$$\begin{array}{c} \text{CH}_{3}\text{CH}=\text{CHCO}_{2}(-)\text{Men} \xrightarrow{\mathbb{R}_{3}\text{SnH}} \text{CH}_{3}\overset{\bullet}{\overset{\bullet}_{\text{H}}}\text{CH}_{2}\text{CO}_{2}(-)\text{Men} \xrightarrow{\text{reduction}} \text{CH}_{3}\overset{\bullet}{\overset{\bullet}_{\text{C}}}\text{HCH}_{2}\text{CH}_{3}\\ \overset{\downarrow}{\overset{\downarrow}_{\text{SnR}_{3}}} \text{SnR}_{3} \end{array}$$

Toutefois, cette méthode ne présente pas toute la souplesse voulue lorsqu'on désire obtenir des carbures organostanniques à groupe R particulier Nous avons donc utilisé d'autres voies

(1) Synthèse des trialkylstannyl-2 butanes à partir du triphénylstannyl-2 butane

La bromolyse du triméthylstannyl-2 butane est pratiquement régiospécifique [14]; elle nous avait permis de réaliser pour R = n-butyle et isobutyle, la séquence suivante.

$$\begin{array}{rcl} \text{Me}_3\text{Sn-s-Bu} & \xrightarrow{\text{RMg}\,x} \text{R}_3\text{Sn-s-Bu} \\ & & (+ \text{Br}_2\text{MeSn-s-Bu}) & (+ \text{R}_2\text{MeSn-s-Bu}) \end{array}$$

Malheureusement, la bromolyse des trois groupes méthyles est une reaction parfois incomplète. Par contre, la bromolyse des trois noyaux aromatiques du triphénylstannyl-2 butane est rapide et totale

Après avoir synthétisé le triphénylstannyl-2 butane optiquement actif par la méthode de substitution directe décrite plus loin, et déterminé son pouvoir rotatoire maximal [13], nous l'avons utilisé pour la séquence bromolyse—substitution magnésienne:

$$Ph_{3}SnM \xrightarrow{s-BuX} Ph_{3}Sn-s-Bu \xrightarrow{(1) Br_{2}} R_{3}Sn-s-Bu$$

(M = Na, Li)

-

Nous avons ainsi obtenu le triisopropylstannyl-2 butane et le tétra(butyl-2)étain optiquement actifs (nous étudierons en détail le cas de ce dernier carbure un peu plus loin). Cependant, l'introduction des groupes néopentyle et pentyle-3 s'est avérée beaucoup plus efficace au moyen de substitutions successives

$$\begin{array}{c} Ph_{3}Sn-s^{+}Bu \xrightarrow{HCI/MeOH} Ph_{2}ClSn-s-Bu \xrightarrow{RMgX} Ph_{2}RSn-s^{+}Bu \\ \downarrow HC1/MeOH \\ R_{3}Sn-s^{+}Bu \xleftarrow{RMgX} ClR_{2}Sn-s^{+}Bu \xleftarrow{HCI/MeOH} PhR_{2}Sn-s^{+}Bu \xleftarrow{RMgX} PhClRSn-s^{+}Bu \end{array}$$

TABLEAU 1

POUVOIRS ROTATOIRES SPECIFIQUES MAXIMAUX DE QUELQUES TRIORGANOSTANNYL-2-BUTANES R₃Sn-s-Bu OBTENUS A PAR FIR DU TRIPHENYLSTANNYL-2 BUTANE OPTIQUEMENT ACTIF

		-		
R	Purete optique ^a de Ph3Sn- s -Bu (13)	$[a]_D^{22}$ mesure b	$\left[\alpha\right]_{D}^{22} \max^{c}$	
	-		- -	
Isopropyle	74 6%	11°6	15°5	
Neopentyle	24 6%	+0 74	+3°0 d	
Pentyle-3	24 7%	-1 53	-6`2	

^a Le pouvoir rotatoire maximal de Ph₃Sn s-Bu pris en reference est $|\alpha|_{D}^{2}$ max 15[°]8 Il est lui-même determine à partir du pouvoir rotatoire maximal de Me₃SnseeBu $[\alpha|_{D}^{2}$ max 24[°]8 [13] ^b Le solvant utilise est le benzêne avec des concentrations comprises entre 8 et 10 g/100 ml ^c Ces valeurs sont données pour les mêmes conditions (concentration et nature du solvant) que $|\alpha|_{D}^{2}$ mesuré ^d Ce chiffre differe d une valeur precedemment rapportee ($|\alpha|_{D}^{2}$ 9°8 [13]) qui s est revelee erronnee

Les résultats sont inclus dans le Tableau 1.

Cas particulier du tétra(butyl-2)étain En réalisant une synthèse au départ du triphénylstannyl-2 butane, nous avons effectivement obtenu un échantillon de tétra(butyl-2)étain doué d'activité optique [13] Cependant, on doit remarquer que, par suite de la présence de quatre centres de chiralité identiques, le tétra-(butyl-2)étain existe sous forme de trois diastéréoisomères, et qu'il n'est donc pas possible de lui attribuer un pouvoir rotatoire spécifique maximal Nous avons examiné ce problème plus en détail à l'aide d'un échantillon de produit racémique obtenu par substitution magnésienne.

SnCl₄ (±) s-BuMgBr (s-Bu)₄Sn

Si l'on symbolise par R ou S les configurations possibles pour chaque groupe chiral, les trois produits attendus sont les couples d'énantiomèles R_4 Sn + S_4 Sn, $R_3SSn + S_3RSn$, ainsi que le composé R_2S_2Sn optiquement inactif par suite de la présence d'un axe de réflexion—rotation S_4 . En outre, en admettant une introduction statistique des groupes de configuration R et S (c'est-à-dire en négligeant, en première approximation, toute induction asymétrique) on peut prévoir le pourcentage d'isomères formés (Tableau 2).

On peut attendre les proportions théoriques suivantes R_4 Sn + S_4 Sn 12 5%, R_2S_2 Sn 37.5%; S_3R Sn + SR_3 Sn 50%

Nous verrons plus loin que l'analyse RMN est en accord avec cette prévision. Il est évident que dans le cas où le composé de départ est optiquement actif (SSnBr₃ et/ou RSnBr₃) seules varient les proportions des énantiomères, les proportions de diastéréoisomères restant inchangées

(2) Synthèse des triorganostannyl-2 butanes par substitution directe

Une autre voie possible pour la synthèse des triorganostannyl-2 butanes optiquement actifs consiste en la substitution d'un halogénure optiquement actif par un triorganostannylalcalin:

 $R_3SnM + s BuX \xrightarrow{solvant} R_3Sn - s Bu + MX$

Jensen et Davis [11] ont ainsi étudié l'action du triphénylstannylsodium sur

TABLEAU 2

SUBSTITUTION DU TETRACHLORURE D ETAIN PAR LE BROMURE DE BUTYL-2 MAGNESIUM

Les chiffres entre parenthèses représentent les proportions de stéreoisomères pour une introduction statistique des groupes butyle secondaire de configuration R ou S

SnCl ₄			
lère substitution	2ème substitution	3eme substitution	4eme substitution
SSnCl ₂ (50)	S ₂ SnCl ₂ (25)	S ₃ SnCl (125)	S4Sn (6 25)
	RSSnCl ₂ (25)	RS_2 SnCl (25)	RS ₃ Sn (1875)
		R ₂ SSnCl (12 5)	$R_2S_2S_n$ (1875)
			R ₃ SSn (625)
RSnCla (50)	RSSnCl ₂ (25)	R_2SSnCl (12 5)	RS3Sn (625)
	R_2 SnCl ₂ (25)	RS_2SnCl (25)	R ₂ S ₂ Sn (1875)
		R ₃ SnCl (12 5)	R ₃ SSn (1875)
		2	R ₄ Sn ((6 25)

le chlorure, le bromure et l'iodure de s-butyle optiquement actifs.

Ph₃SnCl <u>Na/DME</u> Ph₃SnNa <u>s-BuX</u> Ph₃Sn-s-Bu

Le triphénylstannyl-2 butane obtenu est optiquement actif et la substitution est accompagnée d'inversion de configuration. Nous avons tenté de développer cette voie de synthèse au départ de plusieurs autres types d'organométalliques, avec différents solvants, et dans différentes conditions expérimentales. Nos résultats sont rassemblés dans le Tableau 3.

Du point de vue stéréochimique, nous observons dans tous les cas une inversion de configuration prédominante. Cependant, la sélectivité, de même que les rendements, subissent d'importantes variations en fonction des modes opératoires et des réactifs utilisés. Les résultats obtenus avec d'autres modèles par différents auteurs, montrent que, dans l'état actuel des connaissances, il est difficile de rendre compte de ces faits d'expériences [4,6].

II. Analyse par résonance magnétique nucléaire des triorganostannyl-2 butanes

Nous rapportons ici les données RMN concernant huit triorganostannyl-2 butanes R_3Sn -s-Bu pour R = méthyle, isopropyle, n-butyle, isobutyle, s-butyle, pentyle-3, néopentyle et phényle.

(1) Spectres de résonance magnétique nucléaire du carbone 13 (RMC)

Les spectres RMC des triorganostannyl-2 butanes (à l'exception du tétra-(butyl-2)étain) présentent deux parties nettement distinctes de par leurs intensités[.] d'une part, quatre signaux correspondant au seul groupe butyle secondaire présent dans la molécule, d'autre part, les absorptions dues aux trois groupes organiques identiques.

L'attribution des raies d'absorption présentait a priori une difficulté: le groupe butyle secondaire est associé, pour chaque molécule, à trois groupes identiques d'encombrement stérique variable [18]. Les déplacements chimiques du carbone 13 étant très sensibles aux effets stériques, on pouvait s'attendre à des variations en fonction des autres substituants. D'autre part, au moment où ce travail a été effectué, la littérature ne présentait pratiquement pas de données RMC pour des composés organostanniques à substituants ramifiés

Nous avons donc été amenés à utiliser des techniques particulières afin d'attribuer sans ambiguité chaque raie du spectre découplages en "off-resonance", spectres en "inversion—récupération" [19], spectres en "gated-decoupling" [20]. Chaque fois que nos spectres ont permis la lecture des constantes de couplage, les valeurs de constantes ${}^{1}J(CSn)$, ${}^{2}J(CCSn)$, ${}^{3}J(CCCSn)$ et ${}^{4}J(CCCCSn)$ décrites dans la littérature ont apporté une confirmation supplémentaire à nos attributions [21] (Tableau 4).

III. Spectres de résonance magnétique nucléaire de l'étain 119

Les huit triorganostannyl-2 butanes ont été examinés en découplage protonique large bande. On observe une raie unique pour sept d'entre eux et chaque composé présente un déplacement chimique distinct. Il parait cependant difficile d'interpréter les variations de déplacement chimique. Notons toutefois la finesse de cette technique qui permet de distinguer des composés aussi peu différents que les trois diastéréoisomères du tétra(butyl-2)étain

Cas particulier du tétra(butyl-2)étain Le spectre RMC du tétra(butyl-2)étain ne comporte que quatre raies (Fig. 1). Or, ce composé renferme quatre centres

(Suite a la page 56)

Fig. 1. Spectre RMC du tétra(butyl-2)étain solvant: benzène-d6.

Fig. 2. Spectre RM¹¹⁹Sn du tétra(butyl-2)étain- solvant deutérochloroforme/diméthylsulfoxyde-d₆

TABLEAU REACTION	3 4 DES TRIORGAN OSTANNY	LALCALINS AVLC LE	IN IDOTVH S	URES DE BUT'	YLE SECONDA	ire optiquen	1ENT ACTIFS	
R ₃ SnM	Mode d'obtention	Temperature	s BuCl		R ₃ Sn s Bu ^f			
		d'addition (°C)	Configura tion	Pureté optique d (%)	Configura tion ^g	Pureté optique ^{li} (%)	Stéréospócificilé (%)	Rdt. (%)
Me ₃ SnLl Me ₃ SnLl	Mo ₃ SnBr, Li, THF ^a Mo ₃ SnBr, Li, DME ^b	00	(S) (S)	10	(R) (R)	10	~100 ~100	40 50
MegSnLi	Me3SnBr, Li, THF (66%) TGC (34%)	c	(U)	12	(8)	10	83	45
MeasnNa	MershBr, Na, NH	-62	3	12	(S)	2	17	35
BugSnNa	Bu6Sn2, Na, phénanthrène,	THF 22	(S)	01	(R)	6	90 ¢	40
BugSnLi	Bu ₃ SnBr, Li, THF	22	(B)	41	(S)	8	14 6	50
Ph ₃ SnLi Ph ₃ SnNa	Ph ₃ SnCl, Li, THF Ph ₃ SnCl, Na, NH ₃	-50	(K) s BuBr	71	(2)	11	7A	30
			(8)	72	(R)	72	~100	40
a THF = tét travall sont. d'exclure la tone). Les c Compte-ter maux des ta TABLEA U DEPLACEA	Ashydrofuranne, ^b DME = dim , pours Buci [c] 20 max 35 ⁶ 5 [présence de BudSn, diffiellem concentrations sont comprises in des méthodes de corrélation dorganostannyl 2 butanes [13] 4 AENTS CHIMIQUES EN ppm	ethoxy 1.2 ethane. ^c TG 15 , pour s Bubr [af] ² ant separable de Bu 35ns entre 6 et 10 g/100 ml <i>^g</i> a déjà établies [13], tout , DES CARBONES ET DE	= tétragymu ux 34°2 [16] ecBu synthétis La configurat es les configura 2 L'ETAIN DE	(Cil 30Cil 3Cil 3Cil 3Cil 3Cil 3Cil 3 b ^e Ces valeurs p s6. / Les pouvoi tion absolues ations absolues at UEL QUIS ' 3 QUEL QUIS '	OCH2CH2)20. C euvent åtre cons rs rotatoires son (+Xriphényistar de la série sont de la série sont TRIORGANOS'	Les pouvoirs ro ldérées commo r t mesurés dans la anyl 2 butarre a ainsi précisées, h c'NNYL 2 BUT	tatoires maximaux u ninimales car il n'est e benzène (pour Ph ₃ é sté déterminée par ra ¹ A partir des pouvoi ¹ A NES	tillisés dans co pas possible in-s-Bu dans l'acé- y ons X [17]. s rotatoires maxi s rotatoires maxi
Dérivés star	iniques C1	C2	C3	C.4	C ₅	Co Co	0, C8	11 ⁹ Sn
	$c_1 - c_2 - c_3 - 230$	29.3 (² /14 Hz)		18.3 - (2.12.11/)		1		3 3

c ² c ³ c ⁴ c ⁴ c ⁴ c ⁴ c ⁴ c ⁴ c ⁴ c ⁴	22 6	29 6	14 5	18 8	14 6 (¹ J 306 Hz)	22 6 (² 115H7)			-426
ده- د,د,د,د,د,	22 8	29 6	14 6 (³ J 32 II/)	18,7 (² J15 II/)	8 7 (¹ J 297 117)	29 8 (² /19 H/)	27 9	138	-141
c, c, -c, -c, -c, -c, -c, -c, -c, -c, -c	22 6	288	14 0	17.9 (² J12H/)	21 3 (¹ J 289 H7)	269 (² 11611/)	26,8 (¹ J 32 Hz)		-27 4
54(C1C2C3)	23 3 (¹ 7 299 H/)	29 7 (² /12 H7)	14.6 (³ J 40112)	18,6 (² J1511/)					-45 20 -45 34 -45 76
	24 4	29.5 (² J12H1)	14 5	183 (² 11611/)	33 2 (¹ / 289 II/)	26 0 (² J 12 H/)	16 2 (³ J 35112)		{38 5
c c c c c c c c c c c c c c c c c c c	23,5	28 5 (² / 13 11/)	14 3	17.3 (² J121/.)	31 6 (¹ J 281 Hz)	32.2	34 1 (³ J 29 Hz)		-4 0,6
$\begin{bmatrix} c_{1} & c_{2} & c_{3} \\ c_{1} & c_{3} & c_{3} \\ c_{2} & c_{3} & c_{3} \\ \end{bmatrix}_{3}^{2} = \begin{bmatrix} c_{4} & c_{2} & c_{3} \\ c_{1} & c_{2} & c_{3} \\ c_{3} & c_{3} c_{3} & c_{3$	26 4 (¹ J 434 Hz)	28 7 (² / 14 Hz)	14 3 (¹ J 40 Hz)	18,3 (² / 18 ll7)	139 1 (¹ J 442 IIz)	137 2 (² / 34 Hr)	128 3 (³ / 46 Hz)	128 6 (⁴) 5 Hz)	-105,5
Les valeurs des constantes de couple Solvants C ₆ D ₆ (CDCl ₃ pour le tript RAMenors Afremáticulations nouv	ige étain-carbon nénylstannyl 2 bu	e sont indiqués (tane)	s entre parent	thèses, il s'agl	t de la moyenne	des couplages	avec ¹¹⁷ Sn et	119 _{Sn} ,	

Références tétraméthylsilane pour les spectres de RMC tétraméthylétain pour les spectres de RM¹¹⁹Sn Précision⁻ couplages, 1 Hz, déplacements chimiques 003 pprm pour l'étain, <01 pour le carbone

de chiralité identiques et nous avons vu qu'il devrait être en fait constitué de trois isomères dans les proportions théoriques suivantes. 12 5, 37.5 et 50%. Le spectre de RMC ne rend pas compte de cette réalité. Par contre, le spectre de RM¹¹⁹Sn présente trois raies et, par intégration, indique les proportions suivantes 15, 36 et 49% (Fig. 2)

Les trois raies correspondent chacune à un isomère et on peut admettre au vu des valeurs expérimentales que notre hypothèse d'introduction statistique des groupes butyles secondaires, c'est-à-dire pas (ou peu) d'induction asymétrique, est validée.

Partie expérimentale

Les mesures polarimétriques ont été effectuées sur polarimètre Perkin-Elmer 141 dans une cellule de 1 ml thermostatée.

I. Synthèses à partir du triphénylstannyl-2 butane

Les préparations des composés optiquement actifs suivants: triméthyl-, tributyl, tribromostannyl-2 butanes (ce dernier obtenu à partir du triphénylstannyl-2 butane) et tétra(butyl-2)étain ont déjà été décrites [13].

(1) Truisopropylstannyl-2 butane A 60 ml d'une solution magnésienne de bromure d'isopropyle 0 87 N, on additionne 4.16 g (0 01 mol) de tribromostannyl-2 butane $[\alpha]_D^{22}$ —14°5 (c 7 25 benzène) Le mélange est porté 1 h au reflux. Après hydrolyse, extraction, séchage et évaporation de l'éther, le résidu est purifié par élution sur silice (70-230 mesh-pentane). Rdt 2 1 g (68%) $[\alpha]_D^{22}$ —11°6 (c 8.98, benzène). Analyse: Trouvé. C, 51.00, H, 9 57. C₁₃H₃₀Sn calc. C, 51 15; H, 9.84%.

(2) Tétra(butyl-2)étain. (a) Carbure optiquement actif nous avons utilisé la préparation décrite précédemment [13]. (b) Carbure racémique à 120 ml d'une solution magnésienne de bromure de s-butyle 0.9 N, on additionne 5 2 g (0 02 mol) de tétrachlorure d'étain Le mélange est porté 1 h au reflux Après hydrolyse, extraction, séchage et évaporation de l'éther, le residu est purifié par élution sur silice (70–230 mesh-pentane) Rdt 4.5 g (65%) Analyse Trouvé; C, 55.33; H, 10 37. $C_{16}H_{36}$ Sn calc. C, 55 81; H, 10 51%.

(3) Trinéopentylstannyl-2 butane. A une solution de 18.75 g (0.046 mol) de Ph₃Sn-s-Bu [α]₂²² +3°89 (c 5.08, acétone) dans 250 ml de méthanol et 100 ml de PhCl, protégée de la lumière, on additionne 6 ml d'une solution d'HCl/MeOH 7 7 N à température ambiante [22]. Le mélange est agité une nuit, puis on distille les solvants sous vide. On obtient Ph₂ClSn-s-Bu que l'on peut observer en résonance magnétique du proton (RMP) (intégration relative des groupes phényles). Le résidu est dissout dans 20 ml d'éther et additionné à 100 ml d'une solution magnésienne de chlorure de néopentyle 1.08 mol Γ^1 On porte 3 h au reflux, puis on laisse reposer une nuit. Après hydrolyse, extraction, séchage et évaporation de l'éther, on récupère 17.7 g (96%) de néopentyl, Ph₂Sn-s-Bu. RMP. δ (Me₃C) 0.96 ppm (9H,s).

Ce produit est utilisé brut pour la suite de la préparation. On dissout 17.7 g de néopentylPh₂Sn-s-Bu dans 250 ml de MeOH et 100 ml de PhCl. Le mélange est protégé de la lumière et refroidi à 0°C. On ajoute goutte à goutte 5.73 ml d'une solution HCl/MeOH 7.7 N. On opère comme précédemment et l'on ob-

tient le néopentyl₂-PhSn-s-Bu (RMP $\delta(Me_3C)$ 1 03 ppm (9H, s)) L'opération est renouvelée pour obtenir le néopentyl₂ClSn-s-Bu (RMP $\delta(Me_3C)$ 1 07 ppm, (9H, s)) puis le néopentyl₃-Sn-s-Bu. Le produit cst alors élué sur silice (70-230 mesh-pentane). Rdt. 9 4 g (52%) $[\alpha]_{D}^{22}$ +0°74 (c 9.045, benzène) RMP $\delta(Me_3)$ 1.0 ppm (9H,s). Analyse Trouvé C, 58.61; H, 10.79 C₁₉H₄₂Sn calc · C, 58 70, H, 10.73%.

(4) $Tr_1(pentyl-3)stannyl-2$ butane Le (pentyl-3)₃Sn-s-Bu est préparé suivant un processus identique à celui du néopentyl₃Sn-s-Bu, à partir de 25 g (0 0614 mol) de Ph₃Sn-s-Bu [α]_D²² —3°90 (c 9 05, acétone) et du magnésien du chloro-3 pentane.

On obtient finalement le (pentyl-3)₃Sn-s-Bu que l'on purifie comme précédemment. Rdt 14 4 g (60%) $[\alpha]_D^{22}$ —1°53 (c 8 47, benzène) Analyse Trouvé, C, 58 61; H, 10.79. C₁₉H₄₂Sn calc C, 59 06, H, 10 81%

II Substitution directe

A. Triméthylstannyl-2 butane

(1) L₁/THF [23]. A une suspension de 5 2 g (0.74 at g) de Li dans 60 ml de THF refroidie à 0°C, on ajoute lentement 18 3 g (0 075 mol) de Me₃SnBr dans 60 ml de THF. L'addition terminée, on agite pendant 3 h Le milieu est alors vert foncé. Le lithien est ensuite filtré et refroidi à 0°C avant addition de 6.94 g (0.075 mol) de s-BuCl $[\alpha]_{D}^{22}$ +3°51 (produit pur). On agite encore 30 min, puis on hydrolyse Après extraction, neutralisation et séchage, on évapore l'éther Le résidu est distillé. Eb, 106°C/380 mmHg, Rdt 6 63 g (40%) $[\alpha]_{D}^{22}$ -2°49 (c 7.74, benzène).

(2) L_1/DME Le mode opératoire est identique au précédent On utilise s-BuCl $[\alpha]_{D}^{22} + 3^{\circ}51$ (produit pur). Rdt 8 29 g (50%) $[\alpha]_{D}^{22} - 2^{\circ}46$ (c 7 45, benzène)

(3) L₁/THF/TG (Tétraglyme). Le mode opératoire est identique au précédent Le DME est remplacé par un mélange de 66% de THF et de 34% de TG (en volume). On utilise s-BuCl $[\alpha]_{D}^{2^2}$ -4°41 (produit pur) Rdt 7.46 g (45%) $[\alpha]_{D}^{2^2}$ +2°52 (c 7.98, benzène).

(4) Na/NH_3 [24]. Après condensation de 90 ml d'ammoniac par refroidissement au moyen d'un mélange acétone/carboglace, on introduit 0 69 g (0 03 at. g) de Na en morceaux Le milieu devient bleu sombre On agite jusqu'à disparition du sodium, puis on ajoute goutte à goutte 3.66 g (0.015 mol) de Me₃SnBr. On agite 1 h et on additionne 1 39 g (0.015 mol) de s-BuCl $[\alpha]_{D^2}^{22}$ -4°41 (produit pur) On agite encore 1 h, puis on laisse revenir à température ambiante et l'ammoniac s'évapore Le résidu est repris au pentane et hydrolysé. On extrait à l'éther. Après neutralisation, séchage et évaporation de l'éther, on distille le résidu. Eb. 106°C/380 mmHg Rdt 1.16 g (35%). $[\alpha]_{D^2}^{22}$ +0°49 (c 8.34, benzène).

B. Tributylstannyl-2 butane

(1) A partir de Bu_6Sn_2 [25]

$$\operatorname{Bu}_6\operatorname{Sn}_2 \xrightarrow{\operatorname{Na/THF}} \operatorname{Bu}_3\operatorname{SnNa} \xrightarrow{s\operatorname{-BuCl}} \operatorname{Bu}_3\operatorname{Sn-s-Bu}_{phénanthrène}$$

A une solution de 3.75 g de phénanthrène dans 50 ml de THF, on ajoute 0.5 g (0 022 at g) de Na. Le milieu devient vert foncé. On agite 2 h jusqu'à disparition du sodium et ajoute 5.87 g (0.010 mol) de Bu_6Sn_2 dans 5 ml de THF, On agite 1 h, puis on additionne 2.31 g (0.025 mol) de s-BuCl. $[\alpha]_D^{22} + 3^{\circ}46$ (produit pur). Le milieu est agité encore 1 h Après hydrolyse, extraction à l'éther, neutralisation, séchage et évaporation du solvant, le résidu est élué sur silice (70-230 meshpentane). Rdt. 2.78 g (40%) $[\alpha]_D^{22} - 1^{\circ}47$ (c 6.1, benzène).

(2) A partir de Bu₃SnBr [23]

Bu₃SnBr $\xrightarrow{L_{1/THF}}$ Bu₃SnL₁ $\xrightarrow{s-BuCl}$ Bu₃Sn-s-Bu

A une suspension de 1.04 g (0.148 at g) de Li dans 12 ml de THF, on additionne 6 1 g (0 0165 mol) de Bu₃SnBr dans 12 ml de THF Le milieu vire progressivement au vert foncé. On agite pendant 3 h, filtre la solution et additionne goutte à goutte 1.39 g (0.015 mol) de s-BuCl $[\alpha]_{D}^{2^2}$ —4°91 (produit pur) dans 12 ml de THF. Le milieu est agité 30 min Après hydrolyse, extraction à l'éther, neutralisation, séchage et évaporation du solvant, on isole Bu₃Sn-s-Bu par CPV préparative (SE 30 à 30% sur Chrom P). Rdt. 2 6 g (50%). $[\alpha]_{D}^{2^2}$ +0°29 (c 10 7, benzène).

C. Triphénylstannyl-2 butane Outre la méthode déjà décrite [13], nous avons utilisé le mode opératoire suivant[.] on prépare une suspension de 40.5 g (0.10 mol.) de Ph₃SnCl dans 250 ml de NH₃ liquide. On ajoute ensuite 4 58 g (0.2 at g) de Na en morceaux (la coloration bleue doit être juste persistante) A ce mélange, on additionne 13.7 g (0.1 mol) de s-BuBr $[\alpha]_D^{22}$ -24°.7 (liquide pur) Le milieu devient jaune pâle Après un quart d'heure d'agitation, on évapore l'ammoniac en laisant revenir à température ambiante. Le résidu est hydrolysé et extrait à l'éther. La phase éthérée est séchée, puis évaporée Le résidu est recristallisé dans l'éthanol à 95%. F. 72°C. Rdt. 19.9 g (49%) $[\alpha]_D^{22}$ +11°4 (c 7.89, acétone).

III Analyse RMN

(1) Spectres de RMC. Ils ont été effectués sur spectrographe Brucker WP-60 fonctionnant à 15.08 MHz et équipé d'un calculateur Nicolet BNC 12 à mémoire 4 K programme et 8 K acquisition.

Les produits sont étudiés en solution dans le benzène- d_6 , sauf le triphénylstannyl-2 butane qui a été analysé dans le deutérochloroforme. Le tétraméthylsilane est utilisé en réference interne.

(2) Spectres de $RM^{119}Sn$ L'appareil utilisé est le spectrographe Bruker WH 90 fonctionnant à 33.54 MHz et muni du même calculateur que précédemment. Les produits sont placés en solution dans le benzène sauf le triphénylstannyl-2 butane qui, lui, est étudié en solution dans le deutérochloroforme. Dans le cas du tétra(butyl-2)étain, l'utilisation du mélange de solvant benzène- d_6 /diméthylsulfoxyde- d_6 en proportion 1 : 1 améliore considérablement la résolution et permet l'intégration des signaux. D'autre part, afin de s'affranchir de l'effet "NOE" (négatif dans le cas de l'étain) tous les spectres sont enregistrés en "gateddecoupling pulse modulated interrupted proton band decoupling" [26]. Caractéristiques de l'impulsion: durée 8 s $-\alpha = 90^\circ$ — rep. 20 sec.

Bibliographie

- 1 M. Gielen, Acc. Chem. Res. 6 (1973) 198
- 2 K Sisido, S Kozima et K Takizawa Tetrahedron Let., (1967) 33 K. Sisido, T. Miyanisi, I Isida et S Kozima, J Organometal. Chem., 23, (1970) 117.
- 3 C H W Jones, R G. Jones, P Partington et R M G. Roberts, J Organometal. Chem 32 (1971) 201
- 4 H G. Kuivila, J L. Considine et J D Kennedy, J Amer Chem Soc, 98 (1972) 7208
- 5 G S Koermer, M L Hall et T G. Traylor J. Amer Chem. Soc , 94 (1972) 7206
- 6 H. Zimmer et A.V Bayless Tetrahedron Lett (1970) 259
- 7 P Baekelmans M Gielen et J Nasielski, Tetrahedron Lett , (1967) 1149
- 8 PL Bock et G M Whitesides J Amer Chem Soc 96 (1974) 2826
- 9 R Fosty, M Gielen M Pereyre et JP Quintard Bull Soc Chim Belg 87 (1976) 1523
- 10 D D Davis et C E. Gray, Organometal. Chem Rev A 6 (1970) 283
- 11 F R Jensen et D D Davis J Amer. Chem Soc 93 (1971) 4047
- 12 F R Jensen et D.D. Davis, J Amer. Chem. Soc., 93 (1971) 4048.
- 13 A Rahm et M Pereyre, J Organometal Chem 88 (1975) 79
- 14 S Boue M, Gielen et J. Nasielski, J. Organometal Chem 9 (1967) 443
- 15 B A Chaudr, D G. Goodwin et H R Hudson J Chem Soc. B 7 (1970) 290
- 16 J H. Brewster J Amer Chem Soc 81 (1959) 5475
- 17 Y Barrans, M Pereyre et A Rahm J Organometal Chem 125 (1977) 173
- 18 (a) R. Fellous et R Luft, J Amer Chem Soc 95 (1973) 5593, (b) R W Taft Jr, J. Amer. Chem. Soc 74 (1952) 3120
- 19 (a) A Allerhand et D Doddrel, J Amer Chem Soc 93 (1971) 2777 (b) G C Levy et G L Nelson Carbon-13 Nuclear Magnetic Resonance for Organic Chemistry Wiley-Interscience, 1972
- 20 R Freeman et H D W Hill J Magn Reson 5 (1971) 278
- 21 T N. Mitchell et G. Walter, J. Organometal Chem 121 (1976) 177
- 22 (a) M Gielen J Nasielski et J Topart, Rec Trav Chim Pays-Bas 87 (1968) 1051. (b) M Gielen et H Mokhtar-Jamaï Ann Acad Sci New York 239 (1974) 208
- 23 C Tamborski F E Ford, W L Lehn G J. Moore et E J Soloski, J Org Chem 28 (1963) 237
- 24 C A Kraus et W N Greer J Amer Chem Soc 44 (1922) 2629, 47 (1925) 2568
- 25 H Kuhlein, W P Neumann et H Mohring, Angew Chem Int Ed Engl 7 (1968) 455
- 26 R Freeman H D.W. Hill et R Kaptein, J Magn Reson 7 (1972) 327